




 If you ask AMD or your OS: 16 

 The chip has 16 integer schedulers and can run 16 threads 
of execution. 

 If you ask a Cray benchmarker: “it depends” 

 The chip has 8 floating point schedulers and 8 memory 
controllers, but can run 16 threads of execution. 

 

 Modern Intel processors have a similar ambiguity, 8 physical 
cores, but hyperthreadring reports 16 cores to the OS. 

 

 Lesson: Don’t talk about your requirements in terms of “cores” 
and be specific what you actually need. 

HPCMP User Training 4 



 Interlagos is compose of a number 
of “Bulldozer modules” or 
“Compute Unit” 

 A compute unit has shared and 
dedicated components 

 There are two independent 
integer units; shared L2 cache, 
instruction fetch, Icache; and a 
shared, 256-bit Floating Point 
resource 

 A single Integer unit can make use 
of the entire Floating Point 
resource with 256-bit AVX 
instructions 
 Vector Length 

 32 bit operands, VL = 8 
 64 bit operands, VL = 4 

Shared L2 Cache 

Fetch 

Decode 

Shared L3 Cache and NB 

FP 

Scheduler 

1
2
8
-b

it
 F

M
A

C
 

L1 DCache L1 DCache 

1
2
8
-b

it
 F

M
A

C
 

P
ip

e
li
n

e
 

P
ip

e
li
n

e
 

P
ip

e
li
n

e
 

P
ip

e
li
n

e
 

P
ip

e
li
n

e
 

P
ip

e
li
n

e
 

P
ip

e
li
n

e
 

P
ip

e
li
n

e
 

Int 

Scheduler 

Int 

Scheduler 

Int Core 0 Int Core 1 

Dedicated 
Cacconents 

Shared at the 
module level 

Shared at 
the chip level 

5 HPCMP User Training 



 Each processor die is 
composed of 4 compute units 

 The 4 compute units share a 
memory controller and 8MB 
L3 data cache 

 Each processor die is 
configured with two DDR3 
memory channels and 
multiple HT3 links 

 

S
h

a
re

d
 L

3
 C

a
c

h
e
 

NB/HT Links Memory Controller 

6 HPCMP User Training 



7 HPCMP User Training 



 Two die are packaged on 
a multi-chip module to 
form an Interlagos 
processor 

 Processor socket is 
called G34 and is 
compatible with 
Magny Cours 

 Package contains 

 8 compute units 

 16 MB L3 Cache 

 4 DDR3 1333 or 
1600 memory 
channels 

 

 

S
h

a
re

d
 L

3
 C

a
c
h

e
 

NB/HT 
Links 

Memory 
Controller 

S
h

a
re

d
 L

3
 C

a
c
h

e
 

NB/HT 
Links 

Memory 
Controller 

8 HPCMP User Training 



 L1 Cache 

 16 KB, 4-way predicted, parity protected 

 Write-through and inclusive with respect to L2 

 4 cycle load to use latency 

 L2 Cache 

 2MB, Shared within core-module 

 18-20 cycle load to use latency 

 L3 Cache 

 8 MB, non-inclusive victim cache (mostly exclusive) 

 Entries used by multiple core-modules will remain in cache 

 1 to 2 MB used by probe filter (snoop bus) 

 4 sub-caches, one close to each compute module 

 Minimum Load to latency of 55-60 cycles 

 Minimum latency to memory is 90-100 cycles 

9 HPCMP User Training 



 An MPI task is pinned to each integer 
unit 

 Each integer unit has exclusive access 
to an integer scheduler, integer 
pipelines and L1 Dcache 

 The 256-bit FP unit, instruction fetch, 
and the L2 Cache are shared between 
the two integer units 

 256-bit AVX instructions are 
dynamically executed as two 128-
bit instructions if the 2nd FP unit is 
busy 

 When to use 

 Code is highly scalable  to a large 
number of MPI ranks 

 Code can run with a 2GB per task 
memory footprint 

 Code is not well vectorized 

Shared L2 Cache 

Fetch 

Decode 

FP Scheduler 

1
2
8
-b

it
 F

M
A

C
 

L1 DCache L1 DCache 

1
2
8
-b

it
 F

M
A

C
 

P
ip

e
li
n

e
 

P
ip

e
li
n

e
 

P
ip

e
li
n

e
 

P
ip

e
li
n

e
 

P
ip

e
li
n

e
 

P
ip

e
li
n

e
 

P
ip

e
li
n

e
 

P
ip

e
li
n

e
 

Int 
Scheduler 

Int 
Scheduler 

Int Core 0 Int Core 1 

MPI Task 0 Shared 
Components 

MPI Task 1 

10 HPCMP User Training 



 Only one integer unit is used per 
compute unit 

 This unit has exclusive access to the 
256-bit FP unit and is capable of 8 FP 
results per clock cycle 

 The unit has twice the memory 
capacity and memory bandwidth in this 
mode 

 The L2 cache is effectively twice as 
large 

 The peak of the chip is not reduced 

 When to use 

 Code is highly vectorized and makes 
use of AVX instructions 

 Code benefits from higher per task 
memory size and bandwidth Shared L2 Cache 

Fetch 

Decode 

FP 
Scheduler 

1
2

8
-b

it
 F

M
A

C
 

L1 DCache L1 DCache 

1
2

8
-b

it
 F

M
A

C
 

P
ip

e
li

n
e

 

P
ip

e
li

n
e

 

P
ip

e
li

n
e

 

P
ip

e
li

n
e

 

P
ip

e
li
n

e
 

P
ip

e
li
n

e
 

P
ip

e
li
n

e
 

P
ip

e
li
n

e
 

Integer 
Scheduler 

Integer 

Scheduler 

Integer Core 

0 

Integer Core 

1 

Idle 
Components 

Active 
Components 

11 HPCMP User Training 



 An MPI task is pinned to a compute unit 

 OpenMP is used to run a thread on each 
integer unit 

 Each OpenMP thread has exclusive access 
to an integer scheduler, integer pipelines 
and L1 Dcache 

 The 256-bit FP unit and the L2 Cache is 
shared between the two threads 

 256-bit AVX instructions are dynamically 
executed as two 128-bit instructions if the 
2nd FP unit is busy 

 When to use 

 Code needs a large amount of memory per 
MPI rank 

 Code has OpenMP parallelism at each MPI 
rank 

Shared L2 Cache 

Fetch 

Decode 

FP Scheduler 

1
2
8
-b

it
 F

M
A

C
 

L1 DCache L1 DCache 

1
2
8
-b

it
 F

M
A

C
 

P
ip

e
li
n

e
 

P
ip

e
li
n

e
 

P
ip

e
li
n

e
 

P
ip

e
li
n

e
 

P
ip

e
li
n

e
 

P
ip

e
li
n

e
 

P
ip

e
li
n

e
 

P
ip

e
li
n

e
 

Int 
Scheduler 

Int 

Scheduler 

Int Core 0 Int Core 1 

OpenMP 
Thread 0 

Shared 
Components 

OpenMP 
Thread 1 

12 HPCMP User Training 



 Max Vector length doubled to 256 bit 

 Much cleaner instruction set 

 Result register is unique from the source registers 

 Old SSE instruction set always destroyed a source register 

 Floating point multiple-accumulate 

 A(1:4) = B(1:4)*C(1:4) + D(1:4)  ! Now one instruction 

 Next gen of both AMD and Intel will have AVX 

 

 Vectors are becoming more important, not less 

13 HPCMP User Training 



 Dual-Stream mode is the current default mode on the Cray XE6 systems. 
General use does not require any options. CPU affinity is set automatically 
by ALPS.  

 Use the aprun -d option to set the number of OpenMP threads per 
process. If OpenMP is not used, no -d option is required.  The aprun –N 
option is used to specify the number of MPI processes to assign per 
compute node.  This is generally needed if OpenMP threads are used and 
more than one node is used. 

14 HPCMP User Training 



 Single-Stream mode is simple to specify on the Cray XE6 systems if no 
OpenMP threads are used. The aprun -d option is set to a value of 2, 
and CPU affinity is set automatically by ALPS.  (Make sure 
$OMP_NUM_THREADS is not set, or is set to a value of 1.)  

 When OpenMP threads are used, careful setting of the aprun -cc 
cpu_list option is required to get the desired CPU affinity.  A 
cpu_list is map of CPUs to threads. Each process is assigned a list of 
CPUs, with one CPU per thread.  See the aprun(1) man page for more 
details.  The aprun  –N option is used to specify the number of MPI 
processes to assign per compute node.  This is generally needed if more 
than one node is used in Single-Stream mode.  Also, the environment 
variable $OMP_NUM_THREADS needs to be set to the correct number of 
threads per process. 

15 HPCMP User Training 



 No OpenMP or 1 OpenMP thread per process, 16 processes per compute 
node  

-d 2  

 2 OpenMP threads per MPI process, 8 processes per compute node  

-N 8 -cc 

0,2:4,6:8,10:12,14:16,18:20,22:24,26:28,30  

 4 OpenMP threads per MPI process, 4 processes per compute node  

-N 4 -cc 

0,2,4,6:8,10,12,14:16,18,20,22:24,26,28,30  

 8 OpenMP threads per MPI process, 2 processes per compute node  

-N 2 -cc 

0,2,4,6,8,10,12,14:16,18,20,22,24,26,28,30  

 16 OpenMP threads per MPI process, 1 process per compute node  

-N 1 -cc 

0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30  

 

16 HPCMP User Training 



 An XE6 compute node with 2 Interlagos processors has 4 NUMA memory 
domains, each with 4 Bulldozer Modules.  Access to memory located in a 
remote NUMA domain is slower than access to local memory. Bandwidth is 
lower, and latency is higher.  

 OpenMP performance is usually better when all threads in a process 
execute in the same NUMA domain.  For the Dual-Stream case, 8 CPUs 
share a NUMA domain, while in Single-Stream mode 4 CPUs share a NUMA 
domain.  Using a larger number of OpenMP threads per MPI process than 
these values may result in lower performance due to cross-domain 
memory access.  

17 HPCMP User Training 



Run Type Dual-Stream Single-Stream 

No OpenMP 
No option 

needed 
   -d 2     (note: $OMP_NUM_THREADS not set) 

2 OpenMP 

threads 
-N 16 -d 2   -N 8 -cc 0,2:4,6:8,10:12,14:16,18:20,22:24,26:28,30 

4 OpenMP 

threads 
-N 8 -d 4   -N 4 -cc 0,2,4,6:8,10,12,14:16,18,20,22:24,26,28,30 

8 OpenMP 

threads 
-N 4 -d 8   -N 2 -cc 0,2,4,6,8,10,12,14:16,18,20,22,24,26,28,30 

16 OpenMP 

threads 
-N 2 -d 16   -N 1 -cc 0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30 

32 OpenMP 

threads 
-N 1 -d 32    Not Applicable 

18 HPCMP User Training 



 19  HPCMP User Training 



DDR3 Channel 

DDR3 Channel 

DDR3 Channel 

DDR3 Channel 

DDR3 Channel 

DDR3 Channel 

DDR3 Channel 

DDR3 Channel 

 

6MB L3 

Cache 

Greyhound 

Greyhound 

Greyhound 

Greyhound 

Greyhound 

Greyhound 

 

6MB L3 

Cache 

Greyhound 

Greyhound 

Greyhound 

Greyhound 

Greyhound 

Greyhound 

 

6MB L3 

Cache 

Greyhound 

Greyhound 

Greyhound 

Greyhound 

Greyhound 

Greyhound 

 

6MB L3 

Cache 

Greyhound 

Greyhound 

Greyhound 

Greyhound 

Greyhound 

Greyhound H
T

3
 

H
T

3
 

 2 Multi-Chip Modules, 4 Opteron Dies 

 8 Channels of DDR3 Bandwidth to 8 DIMMs 

 24 (or 16) Computational Cores 

 64 KB L1 and 512 KB L2 caches for each core 

 6 MB of shared L3 cache on each die 

 Dies are fully connected with HT3 

 Snoop Filter Feature Allows 4 Die SMP to scale well 

To Interconnect 

HT
3 

HT3 

HT3 

HT1 / HT3 

20  HPCMP User Training 



DDR3 Channel 

DDR3 Channel 

DDR3 Channel 

DDR3 Channel 

DDR3 Channel 

DDR3 Channel 

DDR3 Channel 

DDR3 Channel 

 

6MB L3 

Cache 

Greyhound 

Greyhound 

Greyhound 

Greyhound 

Greyhound 

Greyhound 

 

6MB L3 

Cache 

Greyhound 

Greyhound 

Greyhound 

Greyhound 

Greyhound 

Greyhound 

 

6MB L3 

Cache 

Greyhound 

Greyhound 

Greyhound 

Greyhound 

Greyhound 

Greyhound 

 

6MB L3 

Cache 

Greyhound 

Greyhound 

Greyhound 

Greyhound 

Greyhound 

Greyhound H
T

3
 

H
T

3
 

 2 Multi-Chip Modules, 4 Opteron Dies 

 8 Channels of DDR3 Bandwidth to 8 DIMMs 

 24 (or 16) Computational Cores 

 64 KB L1 and 512 KB L2 caches for each core 

 6 MB of shared L3 cache on each die 

 Dies are fully connected with HT3 

 Snoop Filter Feature Allows 4 Die SMP to scale well 

To Interconnect 

HT
3 

HT3 

HT3 

HT1 / HT3 

21  

MPI task 

Run using 1 MPI task on the node 

Use OpenMP across all 24 cores 

HPCMP User Training 



DDR3 Channel 

DDR3 Channel 

DDR3 Channel 

DDR3 Channel 

DDR3 Channel 

DDR3 Channel 

DDR3 Channel 

DDR3 Channel 

 

6MB L3 

Cache 

Greyhound 

Greyhound 

Greyhound 

Greyhound 

Greyhound 

Greyhound 

 

6MB L3 

Cache 

Greyhound 

Greyhound 

Greyhound 

Greyhound 

Greyhound 

Greyhound 

 

6MB L3 

Cache 

Greyhound 

Greyhound 

Greyhound 

Greyhound 

Greyhound 

Greyhound 

 

6MB L3 

Cache 

Greyhound 

Greyhound 

Greyhound 

Greyhound 

Greyhound 

Greyhound H
T

3
 

H
T

3
 

 2 Multi-Chip Modules, 4 Opteron Dies 

 8 Channels of DDR3 Bandwidth to 8 DIMMs 

 24 (or 16) Computational Cores 

 64 KB L1 and 512 KB L2 caches for each core 

 6 MB of shared L3 cache on each die 

 Dies are fully connected with HT3 

 Snoop Filter Feature Allows 4 Die SMP to scale well 

To Interconnect 

HT
3 

HT3 

HT3 

HT1 / HT3 

22  

MPI task MPI task 

Run using 2 MPI tasks on the node 

One on Each Die 

Use OpenMP across all 12 cores 

in the Die 
HPCMP User Training 



DDR3 Channel 

DDR3 Channel 

DDR3 Channel 

DDR3 Channel 

DDR3 Channel 

DDR3 Channel 

DDR3 Channel 

DDR3 Channel 

 

6MB L3 

Cache 

Greyhound 

Greyhound 

Greyhound 

Greyhound 

Greyhound 

Greyhound 

 

6MB L3 

Cache 

Greyhound 

Greyhound 

Greyhound 

Greyhound 

Greyhound 

Greyhound 

 

6MB L3 

Cache 

Greyhound 

Greyhound 

Greyhound 

Greyhound 

Greyhound 

Greyhound 

 

6MB L3 

Cache 

Greyhound 

Greyhound 

Greyhound 

Greyhound 

Greyhound 

Greyhound H
T

3
 

H
T

3
 

 2 Multi-Chip Modules, 4 Opteron Dies 

 8 Channels of DDR3 Bandwidth to 8 DIMMs 

 24 (or 16) Computational Cores 

 64 KB L1 and 512 KB L2 caches for each core 

 6 MB of shared L3 cache on each die 

 Dies are fully connected with HT3 

 Snoop Filter Feature Allows 4 Die SMP to scale well 

To Interconnect 

HT
3 

HT3 

HT3 

HT1 / HT3 

23  

MPI task 

MPI task 

MPI task 

MPI task 

Run using 4 MPI tasks on the node 

One on Each Socket 

Use OpenMP across all 6 cores 

in the Socket 
HPCMP User Training 



 Cray has put significant effort into reducing OS services and 
interruptions in the compute node OS 

 Improved Scalability 

 Increased time doing running user code 

 Some services are still necessary in order to function, so still 
some interruptions remain, which can reduce scalability of 
codes with frequent synchronization 

 Core specialization provides a way to dedicate a number of 
cores to handling the interrupts that must happen so the 
application will be interrupted less often. 

HPCMP User Training 24 



Two types of interrupts: 

 Directed at a particular core, such as from the network for 
data directed at a particular core.  

 Always handled by the specified core 

 Handled by any available core, such as system/OS services 

 When run without core specialization, these interrupts will 
go to whatever core is most idle at that time 
(unpredictable) 

 Core specialization dedicates a number of cores to handling 
these interrupts in a predictable way. 

HPCMP User Training 25 



 Core Specialization is a feature that moves most systems 
services (noise sources) to a dedicated set of cores on each 
node 

 MPI ranks run on the remaining cores 

 Noise-sensitive applications run faster on the same number of 
nodes with Core Specialization 

 Even though fewer cores are used overall to run MPI ranks 

 20%-30% speedup measured for POP 

 Core Specialization becomes more favorable moving forward 

 Cores are under-served with memory bandwidth 

 A single core represents a shrinking fraction of the compute 
capacity 

HPCMP User Training 26 



 Core specialization is an aprun option: 

 aprun -j 1 … # dedicate 1 core to services (Interlagos 
single-stream mode) 

 aprun -j 2 … # dedicate 2 cores to services (Interlagos 
dual-stream mode) 

 

 Dual-stream mode is more likely to see performance 
improvements than single-stream mode 

HPCMP User Training 27 



Cores  ET  TOTAL  STEP  BAROCLINIC  BAROTROPIC  

Core Spec: 
7168  

410  387  387  198  94  

Standard: 
8192  

528  499  499  264  128  

ratio  .77  .77  .77  .75  .73  

HPCMP User Training 28 

aprun –n 8192 POP 

aprun –n 7168 –j 1 POP 



 Frequent synchronization 

 Large amount of time spent in collectives 

 Especially if it increases faster than expected with 
increasing core count 

 Unexplained scaling problems 

HPCMP User Training 29 



31 HPCMP User Training 





 Stack trace sampling and analysis for large scale applications 
from Lawrence Livermore Labs and the University of Wisconsin 

 Creates a merged stack trace tree 

 Groups ranks with common behaviors 

 Fast: Collects traces for 100s of 1000s of cores in under a 
second 

 Compact: Stack trace tree only a few mega bytes 

 Extreme scale 
Jaguar: 200K cores 

Hopper: 125K cores 

33 HPCMP User Training 



 Sampling across ranks 

 Sampling across time 

 Scalable visualization 

 Shows the big picture 

 Pin points subset for heavy weight debuggers 

34 HPCMP User Training 



Stack Trace Merge Example 

35 HPCMP User Training 



2D-Trace/Space Analysis 

Appl 

Appl 

Appl 

Appl 

Appl 

…
 

36 HPCMP User Training 



 Production, plasma physics PIC ( Particle in Cell) code, run with 
120K cores on hopper, and using HDF5 for parallel I/O 

 Mixed MPI/OpenMP 

 STAT helped them to see the big picture,  as well as eliminate 
code possibilities since they were not in the tree  

37 HPCMP User Training 



38 HPCMP User Training 



39 HPCMP User Training 



40 HPCMP User Training 



 Last year, STAT was a great tool that wasn't quite ported 

 Now (since November 2011), STAT is a great tool that is fully 
ported. 

 And, a new addition: STATGUI 

 Work bench for repeated requests 
 Change granularity 

 Change sampling 

 Continue then resample 

 Launches or attaches 

41 HPCMP User Training 



 module load stat 

 man STAT 

 STAT <pid_of_aprun> 

 Creates 

STAT_results/<app_name>/<merged_st_file> 

 statview <merged_st_file> 

 STATGUI 

 Scaling no longer limited by number file 

descriptors 

42 HPCMP User Training 





 Applications on Cray systems use hundreds of thousands of 
processes 

 On a crash one, many, or all of them might trap 

 No one wants that many core files 

 No one wants that many stack backtraces 

 They are too slow and too big. 

 They are too much to comprehend 

 

44 HPCMP User Training 



 

 System of light weight back-end monitor processes on 
compute nodes 

 Coupled together as a tree with MRNet 

 Automatically launched by aprun 

 Leap into action on any application process trapping 

 Stderr backtrace of first process to trap 

 STAT like analysis provides merged stack backtrace tree 

 Leaf nodes of tree define a modest set of processes to core 
dump 

 Or, a set of processes to attach to with a debugger 

45 HPCMP User Training 



ATP – Abnormal Termination Processing 
Write  

Modify 

Port 

App runs 
(verification) 

Compile 

& Link 

App runs 
(production) 

Optimize 

Debug 

Normal  

Termination 

ATP 

Stacktrace 
(atpMergedBT

.dot) 

STATview 

Exit 

Abnormal 

Termination 

ATP 

STATview 

Exit 

Abnormal 

Termination 

Stacktrace 
(atpMergedBT

.dot) 



 Application process signal handler (atpAppSigHandler) 

o triggers analysis 

 Back-end monitor (atpBackend) 

o collects backtraces via StackwalkerAPI 

o forces core dumps as directed using core_pattern 

 Front-end controller (atpFrontend) 

o coordinates analysis via MRNet 

o selects process set that is to dump core 

 Once initial set up complete, all components comatose 

 

47 HPCMP User Training 



FE 

Front-end 

Back-end 

App 

BE 

App 

BE 

CP 

App 

BE 

App 

BE 

App 

BE 

CP 

App 

BE 

…   

…   …   

48 HPCMP User Training 



 Added support for: 

 Dynamic Applications 

 Threaded Applications 

 Medium memory model compiles 

 Analysis on queuing system wall clock time out 

 Eliminated use of LD_LIBRARY_PATH 

 Numerous bug fixes. 

49 HPCMP User Training 



 Automatic 

 ATP module loaded by default 
 Signal handler added to application and registered 

 Aprun launches ATP in parallel with application launch 

 Run time enabled/disabled via ATP_ENABLED environment 
variable (can be set by site) 

 Provides: 

 backtrace of first crash to stderr 

 merged backtrace trees 

 dumps core file set (if limit/ulimit allows) 

 Tested at 15K PEs 

 

50 HPCMP User Training 



  Support for Checkpoint/Restart 

  Support higher scale 

  Improved output file naming system 

  E-mail on crash, if user requesting HOLD 

51 HPCMP User Training 





 

 Assist the user with application performance analysis and 
optimization 
• Help user identify important and meaningful information from 

potentially massive data sets 

• Help user identify problem areas instead of just reporting data 

• Bring optimization knowledge to a wider set of users 
 

 

 Focus on ease of use and intuitive user interfaces 
• Automatic program instrumentation 
• Automatic analysis 

 

 

 Target scalability issues in all areas of tool development 
• Data management 

 Storage, movement, presentation 

53 HPCMP User Training 



Provide a complete solution from instrumentation to 

measurement to analysis to visualization of data 

 

 Performance measurement and analysis on large systems 
• Automatic Profiling Analysis 

• Load Imbalance 

• HW counter derived metrics 

• Predefined trace groups provide performance statistics for libraries 

called by program (blas, lapack, pgas runtime, netcdf, hdf5, etc.) 

• Observations of inefficient performance 

• Data collection and presentation filtering 

• Data correlates to user source (line number info, etc.) 

• Support MPI, SHMEM, OpenMP, UPC, CAF 

• Access to network counters 

• Minimal program perturbation 

 

 
54 HPCMP User Training 



 

 Usability on large systems 
• Client / server 

• Scalable data format 

• Intuitive visualization of performance data 

 

 Supports “recipe” for porting MPI programs to many-core or 

hybrid systems 

 

 Integrates with other Cray PE software for more tightly 

coupled development environment 

 

55 HPCMP User Training 



 

 Supports traditional post-mortem performance analysis 
• Automatic identification of performance problems 

 Indication of causes of problems 

 Suggestions of modifications for performance improvement 

 
• pat_build: provides automatic instrumentation  

• CrayPat run-time library collects measurements (transparent to the 

user) 

• pat_report performs analysis and generates text reports  

• pat_help: online help utility 

• Cray Apprentice2: graphical visualization tool 

56 HPCMP User Training 



 

 CrayPat 
• Instrumentation of optimized code 

• No source code modification required 

• Data collection transparent to the user 

• Text-based performance reports 

• Derived metrics 

• Performance analysis 

 

 Cray Apprentice2 
• Performance data visualization tool 

• Call tree view 

• Source code mappings 

57 HPCMP User Training 





 pat_build is a stand-alone utility that automatically 

instruments the application for performance collection 

 

 Requires no source code or makefile modification 
• Automatic instrumentation at group (function) level 

 Groups: mpi, io, heap, math SW, … 

 

 Performs link-time instrumentation 
• Requires object files 

• Instruments optimized code 

• Generates stand-alone instrumented program 

• Preserves original binary 

59 HPCMP User Training 



 Supports two categories of experiments 
• asynchronous experiments (sampling) which capture values from the 

call stack or the program counter at specified intervals or when a 

specified counter overflows 

 

• Event-based experiments (tracing) which count some events such as 

the number of times a specific system call is executed 
 

 While tracing provides most useful information, it can be very 

heavy if the application runs on a large number of cores for a 

long period of time 

 

 Sampling can be useful as a starting point, to provide a first 

overview of the work distribution 

60 HPCMP User Training 



 Large programs 
• Scaling issues more dominant 

• Use automatic profiling analysis to quickly identify top time consuming 

routines 

• Use loop statistics to quickly identify top time consuming loops 

 

 Small (test) or short running programs 
• Scaling issues not significant 

• Can skip first sampling experiment and directly generate profile 

• For example: % pat_build –u –g mpi my_program 

 

 

 

61 HPCMP User Training 



Where to Run Instrumented Application 

 

 MUST run on Lustre ( /mnt/snx3/… , /lus/…, /scratch/…,etc.) 

 

 Number of files used to store raw data 

 
 1 file created for program with 1 – 256 processes 

 

 √n files created for program with 257 – n processes 

 

 Ability to customize with PAT_RT_EXPFILE_MAX 

62 
HPCMP User Training 



 

 Runtime controlled through PAT_RT_XXX environment 

variables 

 

 See intro_craypat(1) man page 

 

 Examples of control 
• Enable full trace 

• Change number of data files created 

• Enable collection of HW counters 

• Enable collection of network counters 

• Enable tracing filters to control trace file size (max threads, max call 

stack depth, etc.) 

 

63 HPCMP User Training 



Slide 64  

 Optional timeline view of program available 
• export PAT_RT_SUMMARY=0 

• View trace file with Cray Apprentice2 

 

 Number of files used to store raw data: 
• 1 file created for program with 1 – 256 processes 

• √n files created for program with 257 – n processes 

• Ability to customize with PAT_RT_EXPFILE_MAX 

 

 Request hardware performance counter information: 
• export PAT_RT_HWPC=<HWPC Group> 

• Can specify events or predefined groups 

HPCMP User Training 



 

 Performs data conversion 
• Combines information from binary with raw performance data 

 

 Performs analysis on data 

 

 Generates text report of performance results 

 

 Formats data for input into Cray Apprentice2 

 

65 HPCMP User Training 



66  

 

 The “.ap2” file is a self contained compressed performance 

file 

 

 Normally it is about 5 times smaller than the “.xf” file 

 

 Contains the information needed from the application binary 
• Can be reused, even if the application binary is no longer available or 

if it was rebuilt 

 

 It is the only input format accepted by Cray Apprentice2 

 

 

HPCMP User Training 



67  

File Suffix Description 

a.out+pat Program instrumented for data collection 

a.out…s.xf 
 

Raw data for sampling experiment, available after 
application execution 

a.out…t.xf Raw data for trace (summarized or full) experiment, available 
after application execution 

a.out…st.ap2 Processed data, generated by pat_report, contains 
application symbol information 

a.out…s.apa Automatic profiling pnalysis template, generated by 
pat_report (based on pat_build –O apa experiment) 

a.out+apa Program instrumented using .apa file 

MPICH_RANK_ORDER.Custom Rank reorder file generated by pat_report from automatic 
grid detection an reorder suggestions 

HPCMP User Training 



 

 Automatic profiling analysis (APA) 

 
• Provides simple procedure to instrument and collect performance data 

for novice users 

 

• Identifies top time consuming routines 

 

• Automatically creates instrumentation template customized to 

application for future in-depth measurement and analysis 

68 HPCMP User Training 



 Access performance tools software 
 
 % module load perftools 
 

 Build application  keeping .o files (CCE: -h keepfiles) 
 
 % make clean 
 % make 

 

 Instrument application for automatic profiling analysis 
• You should get an instrumented program a.out+pat 

 
 % pat_build –O apa a.out 

 

 Run application to get top time consuming routines 
• You should get a performance file (“<sdatafile>.xf”)  or                    

multiple files in a directory <sdatadir> 
 

 % aprun … a.out+pat  (or  qsub <pat script>) 

69 HPCMP User Training 



 70  

 

 

 Generate report and .apa instrumentation file 
 
% pat_report –o my_sampling_report [<sdatafile>.xf | 

<sdatadir>] 
 

 Inspect .apa file and sampling report 

 

 Verify if additional instrumentation is needed  
 
 

HPCMP User Training 



 71  

APA File Example 

#  You can edit this file, if desired, and use it 

#   to reinstrument the program for  tracing like this: 

# 

#           pat_build -O standard.cray-xt.PE-2.1.56HD.pgi-8.0.amd64.pat-5.0.0.2-
Oapa.512.quad.cores.seal.090405.1154.mpi.pat_rt_exp=default.pat_rt_hwpc=non
e.14999.xf.xf.apa 

# 

#  These suggested trace options are based on data from: 

# 

#    
/home/users/malice/pat/Runs/Runs.seal.pat5001.2009Apr04/./pat.quad/homme/st
andard.cray-xt.PE-2.1.56HD.pgi-8.0.amd64.pat-5.0.0.2-
Oapa.512.quad.cores.seal.090405.1154.mpi.pat_rt_exp=default.pat_rt_hwpc=non
e.14999.xf.xf.cdb 

# ---------------------------------------------------------------------- 

 

#       HWPC group to collect by default. 

 

  -Drtenv=PAT_RT_HWPC=1  # Summary with TLB metrics. 

 

# ---------------------------------------------------------------------- 

 

#       Libraries to trace. 

 

  -g mpi 

 

# ---------------------------------------------------------------------- 

 

#       User-defined functions to trace, sorted by % of samples. 

 

#       The way these functions are filtered can be controlled with 

#       pat_report options (values used for this file are shown): 

# 

#       -s apa_max_count=200    No more than 200 functions are listed. 

#       -s apa_min_size=800     Commented out if text size < 800 bytes. 

#       -s apa_min_pct=1        Commented out if it had < 1% of samples. 

#       -s apa_max_cum_pct=90   Commented out after cumulative 90%. 

 

#       Local functions are listed for completeness, but cannot be traced. 

 

  -w  # Enable tracing of user-defined functions. 

      # Note: -u should NOT be specified as an additional option. 

# 31.29%  38517 bytes 

         -T prim_advance_mod_preq_advance_exp_ 

 

# 15.07%  14158 bytes 

         -T prim_si_mod_prim_diffusion_ 

 

#  9.76%  5474 bytes 

         -T derivative_mod_gradient_str_nonstag_ 

 

. . . 

 

#  2.95%  3067 bytes 

         -T forcing_mod_apply_forcing_ 

 

#  2.93%  118585 bytes 

         -T column_model_mod_applycolumnmodel_ 

 

#  Functions below this point account for less than 10% of samples. 

 

#  0.66%  4575 bytes 

#         -T bndry_mod_bndry_exchangev_thsave_time_ 

 

#  0.10%  46797 bytes 

#         -T baroclinic_inst_mod_binst_init_state_ 

 

#  0.04%  62214 bytes 

#         -T prim_state_mod_prim_printstate_ 

 

. . .  

#  0.00%  118 bytes 

#         -T time_mod_timelevel_update_ 

 

# ---------------------------------------------------------------------- 

 

  -o preqx.cray-xt.PE-2.1.56HD.pgi-8.0.amd64.pat-5.0.0.2.x+apa                                                                                                                        
# New instrumented program. 

 

  
/.AUTO/cray/css.pe_tools/malice/craypat/build/pat/2009Apr03/2.1.56HD/amd64/ho
mme/pgi/pat-5.0.0.2/homme/2005Dec08/build.Linux/preqx.cray-xt.PE-
2.1.56HD.pgi-8.0.amd64.pat-5.0.0.2.x  # Original program. 

HPCMP User Training 



 Instrument application for further analysis (a.out+apa) 

 
% pat_build –O <apafile>.apa 
 

 Run application  

 
% aprun … a.out+apa  (or  qsub <apa script>) 

 

 Generate text report and visualization file (.ap2) 

 
% pat_report –o my_text_report.txt [<datafile>.xf | 

<datadir>] 

 
 

 View report in text and/or with Cray Apprentice2 

 
% app2 <datafile>.ap2 

 

72 HPCMP User Training 





 AMD Family 10H Opteron Hardware Performance Counters 
• Each core has 4 48-bit performance counters 

 Each counter can monitor a single event 

o Count specific processor events 

» the processor increments the counter when it detects an occurrence of the 

event 

»  (e.g., cache misses) 

o Duration of events 

» the processor counts the number of processor clocks it takes to complete an 

event 

» (e.g., the number of clocks it takes to return data from memory after a cache 

miss) 

• Time Stamp Counters (TSC) 

 Cycles (user time) 

74 HPCMP User Training 



 

 AMD Family 15H Opteron Hardware Performance Counters 
• Each node has 4 48-bit NorthBridge counters 

 

• Each core has 6 48-bit performance counters 

 Not all events can be counted on all counters 

 Supports multi-events 

o events have a maximum count per clock that exceeds one event per clock  

 

75 HPCMP User Training 



 Common set of events deemed relevant and useful for application 
performance tuning 
• Accesses to the memory hierarchy, cycle and instruction counts, 

functional units, pipeline status, etc. 

• The “papi_avail” utility shows which predefined events are available on 
the system – execute on compute node 

 

 PAPI also provides access to native events 
• The “papi_native_avail” utility lists all AMD native events available on the 

system – execute on compute node 

 

 PAPI uses perf_events Linux subsystem 
 

 Information on PAPI and AMD native events 
• pat_help counters 

• man intro_papi (points to PAPI documentation: http://icl.cs.utk.edu/papi/) 

• http://lists.eecs.utk.edu/pipermail/perfapi-devel/2011-January/004078.html 

 

76 HPCMP User Training 



 HW counter collection enabled with PAT_RT_HWPC 

environment variable 

 

 PAT_RT_HWPC <set number> | <event list> 
 

• A set number can be used to select a group of predefined hardware 

counters events (recommended) 

 CrayPat provides 23 groups on the Cray XT/XE systems 

 See pat_help(1) or the hwpc(5) man page for a list of groups 

 

• Alternatively a list of hardware performance counter event names can 

be used 

 

• Hardware counter events are not collected by default 

77 HPCMP User Training 



 

 Raw data 

 

 Derived metrics 

 

 Desirable thresholds 

 

78 HPCMP User Training 



See pat_help -> counters -> amd_fam15h –> groups 

     0: Summary with instructions metrics 

     1: Summary with TLB metrics 

     2: L1 and L2 Metrics 

     3: Bandwidth information 

     4: <Unused> 

     5: Floating operations dispatched 

     6: Cycles stalled, resources idle 

     7: Cycles stalled, resources full 

     8: Instructions and branches 

     9: Instruction cache 

    10: Cache Hierarchy (unsupported for IL) 

     
79 HPCMP User Training 



     

    11: Floating point operations dispatched 

    12: Dual pipe floating point operations dispatched 

    13: Floating point operations SP 

    14: Floating point operations DP 

    L3 (socket and core level) (unsupported) 

    19: Prefetchs 

    20: FP, D1, TLB, MIPS    <<-new for Interlagos 

    21: FP, D1, TLB, Stalls 

    22: D1, TLB, MemBW 

 

80 HPCMP User Training 



 Group 20: FP, D1, TLB, MIPS 
  PAPI_FP_OPS 

  PAPI_L1_DCA 

  PAPI_L1_DCM 

  PAPI_TLB_DM 

  DATA_CACHE_REFILLS_FROM_NORTHBRIDGE 

  PAPI_TOT_INS 

 

 Group 21: FP, D1, TLB, Stalls 
  PAPI_FP_OPS 

  PAPI_L1_DCA 

  PAPI_L1_DCM 

  PAPI_TLB_DM 

  DATA_CACHE_REFILLS_FROM_NORTHBRIDGE 

  PAPI_RES_STL 

81 HPCMP User Training 



Check spelling via papi_native_avail 

 

PAPI_DP_OPS 

 

 AMD Family 10H: 
• RETIRED_SSE_OPERATIONS:DOUBLE_ADD_SUB_OPS:DOUBLE_MUL

_OPS:DOUBLE_DIV_OPS 

 

 AMD Family 15H: 
• RETIRED_SSE_OPS:DOUBLE_ADD_SUB_OPS:DOUBLE_MUL_OPS:DO

UBLE_DIV_OPS:DOUBLE_MUL_ADD_OPS 

82 HPCMP User Training 



 

 

 

 

 

 

  PAPI_TLB_DM  Data translation lookaside buffer misses 

  PAPI_L1_DCA  Level 1 data cache accesses 

  PAPI_FP_OPS  Floating point operations 

  DC_MISS      Data Cache Miss 

  User_Cycles  Virtual Cycles 

======================================================================== 

USER 

------------------------------------------------------------------------ 

  Time%                                            98.3% 

  Time                                          4.434402 secs 

  Imb.Time                                            -- secs 

  Imb.Time%                                           -- 

  Calls                          0.001M/sec       4500.0 calls 

  PAPI_L1_DCM                   14.820M/sec     65712197 misses 

  PAPI_TLB_DM                    0.902M/sec      3998928 misses 

  PAPI_L1_DCA                  333.331M/sec   1477996162 refs 

  PAPI_FP_OPS                  445.571M/sec   1975672594 ops 

  User time (approx)             4.434 secs  11971868993 cycles  100.0%Time 

  Average Time per Call                         0.000985 sec 

  CrayPat Overhead : Time         0.1% 

  HW FP Ops / User time        445.571M/sec   1975672594 ops   4.1%peak(DP) 

  HW FP Ops / WCT              445.533M/sec 

  Computational intensity         0.17 ops/cycle    1.34 ops/ref 

  MFLOPS (aggregate)           1782.28M/sec 

  TLB utilization               369.60 refs/miss   0.722 avg uses 

  D1 cache hit,miss ratios       95.6% hits         4.4% misses 

  D1 cache utilization (misses)  22.49 refs/miss   2.811 avg hits 

======================================================================== 

 

 

 

 

83 

PAT_RT_HWPC=1 

  Flat profile data  

      Raw counts 

          Derived metrics 

HPCMP User Training 







 Reduced pat_report processing and report generation times 

 

 Reduced app2 data load times 

 

 Graphical presentation handled locally (not passed through ssh 

connection) 

 

 Better tool responsiveness 

 

 Minimizes data loaded into memory at any given time 

 

 Reduced server footprint on Cray XT/XE service node 

 

 Larger data files handled (1.5TB .xf -> 800GB .ap2) 

86 HPCMP User Training 



 CPMD 
• MPI, instrumented with pat_build –u, HWPC=1 

• 960 cores 

 

 

 

 

 

 VASP 
• MPI, instrumented with pat_build –gmpi –u, HWPC=3 

• 768 cores 

 
 

 

Perftools 5.1.3 Perftools 5.2.0 

.xf -> .ap2      88.5 seconds 22.9 seconds 

ap2 -> report 1512.27 seconds 49.6 seconds 

Perftools 5.1.3 Perftools 5.2.0 

.xf -> .ap2 45.2 seconds 15.9 seconds 

ap2 -> report 796.9 seconds 28.0 seconds 

87 HPCMP User Training 



 Log into Cray XT/XE login node 
% ssh –Y kaibab 

 

 Launch Cray Apprentice2 on Cray XT/XE login node 
% app2 /lus/scratch/mydir/my_program.ap2 

• User interface displayed on desktop via ssh X11 forwarding 

• Entire .ap2  file loaded into memory on login node (can be Gbytes of 

data) 

Linux desktop Cray XT/XE login Compute nodes All data from 

my_program.ap2 + 

X11 protocol 
app2 

 

my_program.ap2 

X Window 

System 

application 
my_program+apa 

Collected 

performance 

data 

88 HPCMP User Training 



 

 Launch Cray Apprentice2 on desktop, point to data 
% app2 kaibab:/lus/scratch/mydir/my_program.ap2 

 

• User interface displayed on desktop via X Windows-based software 

• Minimal subset of data from.ap2 file loaded into memory on login node 

at any given time 

• Only data requested sent from server to client 

Linux desktop Cray XT/XE login Compute nodes User requested data 

from 

my_program.ap2 app2 server 

 

my_program.ap2 

X Window 

System 

application 

 

app2 client 
my_program+apa 

Collected 

performance 

data 

89 HPCMP User Training 



90 

CrayPat/X:  Version 5.2.3.8078 Revision 8078 (xf 8063)  08/25/11 … 

 

Number of PEs (MPI ranks):   16 

 

Numbers of PEs per Node:     16 

 

Numbers of Threads per PE:    1 

 

Number of Cores per Socket:  12 

 

Execution start time:  Thu Aug 25 14:16:51 2011 

 

System type and speed:  x86_64 2000 MHz 

 

Current path to data file: 

  /lus/scratch/heidi/ted_swim/mpi-openmp/run/swim+pat+27472-34t.ap2 

 

Notes for table 1: 

… 

HPCMP User Training 



91 

 

 
 

Notes for table 1: 

 

  Table option: 

    -O profile 

  Options implied by table option: 

    -d ti%@0.95,ti,imb_ti,imb_ti%,tr -b gr,fu,pe=HIDE 

  Other options: 

    -T 

 

  Options for related tables: 

    -O profile_pe.th           -O profile_th_pe 

    -O profile+src             -O load_balance 

    -O callers                 -O callers+src 

    -O calltree                -O calltree+src 

 

  The Total value for Time, Calls is the sum for the Group values. 

  The Group value for Time, Calls is the sum for the Function values. 

  The Function value for Time, Calls is the avg for the PE values. 

    (To specify different aggregations, see: pat_help report options s1) 

 

  This table shows only lines with Time% > 0. 

 

  Percentages at each level are of the Total for the program. 

    (For percentages relative to next level up, specify: 

      -s percent=r[elative]) 

HPCMP User Training 



92 

 

 

 

… 
Instrumented with: 

  pat_build -gmpi -u himenoBMTxpr.x 

 

Program invocation: 

  ../bin/himenoBMTxpr+pat.x 

 

Exit Status:  0 for 256 PEs 

 

CPU  Family: 15h  Model: 01h  Stepping: 2 

 

Core Performance Boost:  Configured for   0 PEs 

                         Capable    for 256 PEs 

 

Memory pagesize:  4096 

 

Accelerator Model: Nvidia X2090 Memory: 6.00 GB Frequency: 1.15 GHz 

 

Programming environment:  CRAY 

 

Runtime environment variables: 

  OMP_NUM_THREADS=1 

… 

 

HPCMP User Training 



 
 
 
 
Notes for table 1: 
 
... 
 
Table 1:  Profile by Function 
 
 Samp % | Samp |  Imb. |   Imb. |Group 
        |      |  Samp | Samp % | Function 
        |      |       |        |  PE='HIDE' 
 
 100.0% |  775 |    -- |     -- |Total 
|------------------------------------------- 
|  94.2% |  730 |    -- |     -- |USER 
||------------------------------------------ 
||  43.4% |  336 |  8.75 |   2.6% |mlwxyz_ 
||  16.1% |  125 |  6.28 |   4.9% |half_ 
||   8.0% |   62 |  6.25 |   9.5% |full_ 
||   6.8% |   53 |  1.88 |   3.5% |artv_ 
||   4.9% |   38 |  1.34 |   3.6% |bnd_ 
||   3.6% |   28 |  2.00 |   6.9% |currenf_ 
||   2.2% |   17 |  1.50 |   8.6% |bndsf_ 
||   1.7% |   13 |  1.97 |  13.5% |model_ 
||   1.4% |   11 |  1.53 |  12.2% |cfl_ 
||   1.3% |   10 |  0.75 |   7.0% |currenh_ 
||   1.0% |    8 |  5.28 |  41.9% |bndbo_ 
||   1.0% |    8 |  8.28 |  53.4% |bndto_ 
||========================================== 
|   5.4% |   42 |    -- |     -- |MPI 
||------------------------------------------ 
||   1.9% |   15 |  4.62 |  23.9% |mpi_sendrecv_ 
||   1.8% |   14 | 16.53 |  55.0% |mpi_bcast_ 
||   1.7% |   13 |  5.66 |  30.7% |mpi_barrier_ 
|=========================================== 

93 HPCMP User Training 



   

 

 

Table 1:  Profile by Function Group and Function 

 

 Time % |       Time |Imb. Time |   Imb. | Calls |Group 

        |            |          | Time % |       | Function 

        |            |          |        |       |  PE='HIDE' 

 

 100.0% | 104.593634 |       -- |     -- | 22649 |Total 

|------------------------------------------------------------ 

|  71.0% |  74.230520 |       -- |     -- | 10473 |MPI 

||----------------------------------------------------------- 

||  69.7% |  72.905208 | 0.508369 |   0.7% |   125 |mpi_allreduce_ 

||   1.0% |   1.050931 | 0.030042 |   2.8% |    94 |mpi_alltoall_ 

||=========================================================== 

|  25.3% |  26.514029 |       -- |     -- |    73 |USER 

||----------------------------------------------------------- 

||  16.7% |  17.461110 | 0.329532 |   1.9% |    23 |selfgravity_ 

||   7.7% |   8.078474 | 0.114913 |   1.4% |    48 |ffte4_ 

||=========================================================== 

|   2.5% |   2.659429 |       -- |     -- |   435 |MPI_SYNC 

||----------------------------------------------------------- 

||   2.1% |   2.207467 | 0.768347 |  26.2% |   172 |mpi_barrier_(sync) 

||=========================================================== 

|   1.1% |   1.188998 |       -- |     -- | 11608 |HEAP 

||----------------------------------------------------------- 

||   1.1% |   1.166707 | 0.142473 |  11.1% |  5235 |free 

|============================================================ 

94 HPCMP User Training 



   

 

 

Table 4:  MPI Message Stats by Caller 

 

    MPI Msg |MPI Msg |  MsgSz |  4KB<= |Function 

      Bytes |  Count |   <16B |  MsgSz | Caller 

            |        |  Count |  <64KB |  PE[mmm] 

            |        |        |  Count | 

 

 15138076.0 | 4099.4 |  411.6 | 3687.8 |Total 

|------------------------------------------------ 

| 15138028.0 | 4093.4 |  405.6 | 3687.8 |MPI_ISEND 

||----------------------------------------------- 

||  8080500.0 | 2062.5 |   93.8 | 1968.8 |calc2_ 

3|            |        |        |        | MAIN_ 

||||--------------------------------------------- 

4|||  8216000.0 | 3000.0 | 1000.0 | 2000.0 |pe.0 

4|||  8208000.0 | 2000.0 |     -- | 2000.0 |pe.9 

4|||  6160000.0 | 2000.0 |  500.0 | 1500.0 |pe.15 

||||============================================= 

||  6285250.0 | 1656.2 |  125.0 | 1531.2 |calc1_ 

3|            |        |        |        | MAIN_ 

||||--------------------------------------------- 

4|||  8216000.0 | 3000.0 | 1000.0 | 2000.0 |pe.0 

4|||  6156000.0 | 1500.0 |     -- | 1500.0 |pe.3 

4|||  6156000.0 | 1500.0 |     -- | 1500.0 |pe.5 

||||============================================= 

. . . 

 

95 HPCMP User Training 



Slide 96  

Call Graph Profile 

Communication & 

I/O Activity View 

Load balance 

views 

Function Profile 

Time Line   

& I/O Views 

Pair-wise 

Communication 

View 

Function 

Overview 

Source code 

mapping 

HPCMP User Training 



 Call graph profile 

 Communication statistics 

 Time-line view 

• Communication  

• I/O 

 Activity view 

 Pair-wise communication 

statistics 

 Text reports 

 Source code mapping 

 Cray Apprentice2 helps identify: 

• Load imbalance 

• Excessive communication 

• Network contention 

• Excessive serialization 

• I/O Problems 

97 HPCMP User Training 



98 HPCMP User Training 



Switch Overview display 

99 HPCMP User Training 



Slide 

100  
HPCMP User Training 



101 HPCMP User Training 



Min, Avg, and Max 

Values 

-1, +1 

Std Dev 

marks 

102 HPCMP User Training 



Function 

List 

Load balance overview: 

Height  Max time 

Middle bar  Average time 

Lower bar  Min time 

Yellow represents 

imbalance time    

Zoom 

Height  exclusive time 

Width  inclusive time 

DUH Button: 

Provides hints 

for performance 

tuning 

Filtered 

nodes or 

sub tree 

103 HPCMP User Training 



Function 

List off 

Right mouse click: 

Node menu 

e.g., hide/unhide 

children 

Sort options 

% Time, 

Time, 

Imbalance % 

Imbalance time 

Right mouse click: 

View menu: 

e.g., Filter 

104 HPCMP User Training 



Slide 105  

 
 
 
 

HPCMP User Training 



Slide 106  HPCMP User Training 



Slide 107  HPCMP User Training 



-1, +1 

Std Dev 

marks 

Min, Avg, and Max 

Values 

108 HPCMP User Training 



109 HPCMP User Training 



 

 Complimentary performance data available in one place 

 

 Drop down menu provides quick access to most common 

reports 

 

 Ability to easily generate different views of performance data 

 

 Provides mechanism for more in depth explanation of data 

presented 

110 HPCMP User Training 



New text 
table icon 

Right click for 
table 

generation 
options 

111 HPCMP User Training 



112 HPCMP User Training 





 

 Load imbalance 

 
• Identifies computational code regions and synchronization calls that 

could benefit most from load balance optimization (some processes 

have less work than others, some are waiting longer on barriers, etc) 

 

• Estimates savings if corresponding section of code were balanced 

 

• MPI sync time (determines late arrivers to barriers) 

• MPI rank placement suggestions (maximize on-node communication) 

• Imbalance metrics (user functions, MPI functions, OpenMP threads) 

114 HPCMP User Training 



 Increasing system software and architecture complexity 
• Current trend in high end computing is to have systems with tens of 

thousands of processors 

 This is being accentuated with multi-core processors 

 

 Applications have to be very well balanced In order to 

perform at scale on these MPP systems 
• Efficient application scaling includes a balanced use of requested 

computing resources 

 

 Desire to minimize computing resource “waste” 
• Identify slower paths through code 

• Identify inefficient “stalls” within an application 

115 HPCMP User Training 



 Measure load imbalance in programs instrumented to trace 

MPI functions to determine if MPI ranks arrive at collectives 

together 

 

 Separates potential load imbalance from data transfer 

 

 Sync times reported by default if MPI functions traced 

 

 If desired, PAT_RT_MPI_SYNC=0  deactivates this feature  

116 HPCMP User Training 



 Metric based on execution time  

 It is dependent on the type of activity: 
• User functions 

Imbalance time = Maximum time – Average time 

• Synchronization (Collective communication and barriers) 

Imbalance time = Average time – Minimum time 

 Identifies computational code regions and synchronization 

calls that could benefit most from load balance optimization 

 Estimates how much overall program time could be saved if 

corresponding section of code had a perfect balance 
• Represents upper bound on “potential savings” 

• Assumes other processes are waiting, not doing useful work while 

slowest member finishes 

117 HPCMP User Training 



 

 

 

 Represents % of resources available for parallelism that is 

“wasted” 

 

 Corresponds to % of time that rest of team is not engaged in 

useful work on the given function 

 

 Perfectly balanced code segment has imbalance of 0% 

 

 Serial code segment has imbalance of 100% 

Imbalance% =  
Imbalance time 

Max Time 
X 

N - 1 

N 
100 X 

118 HPCMP User Training 



-1, +1 

Std Dev 

marks 

Min, Avg, and Max 

Values 

119 HPCMP User Training 





 Analyze runtime performance data to identify grids in a 

program to maximize on-node communication 
• Example: nearest neighbor exchange in 2 dimensions 

 Sweep3d uses a 2-D grid for communication 

 

 Determine whether or not a custom MPI rank order will 

produce a significant performance benefit 

 

 Grid detection is helpful for programs with significant point-to-

point communication 

 

 Doesn’t interfere with MPI collective communication 

optimizations 

121 HPCMP User Training 



 

 Tools produce a custom rank order if it’s beneficial based on 

grid size, grid order and cost metric 

 

 Summarized findings in report 

 

 Available if MPI functions traced (-g mpi)  

 

 Describe how to re-run with custom rank order 

 

122 HPCMP User Training 



MPI Grid Detection:  There appears to be point-to-point MPI 

     communication in a 22 X 18 grid pattern. The 48.6% of the total 

     execution time spent in MPI functions might be reduced with a rank 

     order that maximizes communication between ranks on the same node. 

     The effect of several rank orders is estimated below. 

 

     A file named MPICH_RANK_ORDER.Custom was generated along with this 

     report and contains the Custom rank order from the following table. 

     This file also contains usage instructions and a table of 

     alternative rank orders. 

 

          Rank    On-Node     On-Node   MPICH_RANK_REORDER_METHOD 

         Order   Bytes/PE   Bytes/PE% 

                             of Total 

                             Bytes/PE 

 

         Custom   7.80e+06      78.37%  3 

            SMP   5.59e+06      56.21%  1 

           Fold   2.59e+05       2.60%  2 

     RoundRobin   0.00e+00       0.00%  0 

     

123 HPCMP User Training 



 

# The 'Custom' rank order in this file targets nodes with multi-core 

# processors, based on Sent Msg Total Bytes collected for: 

# 

# Program:      /lus/nid00030/heidi/sweep3d/mod/sweep3d.mpi 

# Ap2 File:     sweep3d.mpi+pat+27054-89t.ap2 

# Number PEs:   48 

# Max PEs/Node: 4 

# 

# To use this file, make a copy named MPICH_RANK_ORDER, and set the  

# environment variable MPICH_RANK_REORDER_METHOD to 3 prior to  

# executing the program. 

# 

# The following table lists rank order alternatives and the grid_order 

# command-line options that can be used to generate a new order. 

… 

 
124 HPCMP User Training 



================  Observations and suggestions  ======================== 

MPI grid detection: 

    There appears to be point-to-point MPI communication in a 33 X 41 

    grid pattern. The 26.1% of the total execution time spent in MPI 

    functions might be reduced with a rank order that maximizes 

    communication between ranks on the same node. The effect of several 

    rank orders is estimated below. 

 

    A file named MPICH_RANK_ORDER.Custom was generated along with this 

    report and contains the Custom rank order from the following table. 

    This file also contains usage instructions and a table of 

    alternative rank orders. 

 

         Rank    On-Node     On-Node   MPICH_RANK_REORDER_METHOD 

        Order   Bytes/PE   Bytes/PE% 

                            of Total 

                            Bytes/PE 

 

        Custom   1.20e+09      32.21%  3 

           SMP   8.70e+08      23.27%  1 

          Fold   3.55e+07       0.95%  2 

    RoundRobin   1.99e+05       0.01%  0 

================  End Observations  ==================================== 

 125 HPCMP User Training 



 

 Run on 1353 MPI ranks, 24 ranks per node 

 

 Overall program wallclock: 
• Default MPI rank order: 1450s 

• Custom MPI rank order: 1315s 

• ~10% improvement in execution time! 

 

 Time spent in MPI routines: 
• Default rank order: 377s 

• Custom rank order: 303s 

126 HPCMP User Training 





 Helps identify loops to optimize (parallelize serial loops): 
• Loop timings approximate how much work exists within a loop 

• Trip counts can be used to help carve up loop on GPU 

 

 Enabled with CCE –h profile_generate option 
• Should be done as separate experiment – compiler optimizations are 

restricted with this feature 

 

 Loop statistics reported by default in pat_report table 

 

 Next enhancement: integrate loop information in profile 
• Get exclusive times and loops attributed to functions 

 

 
128 HPCMP User Training 



 Load PrgEnv-cray software 

 Load perftools software 

 

 Compile AND link with –h profile_generate 

 

 Instrument binary for tracing 
• pat_build –u my_program  or 

• pat_build –w my_program 

 

 Run application 

 Create report with loop statistics 
• pat_report my_program.xf > loops_report 

129 HPCMP User Training 



Table 1:  Profile by Function Group and Function 

 Time%  |      Time  |     Imb.  |  Imb.  |  Calls  |Group 

        |            |     Time  | Time%  |         | Function 

        |            |           |        |         |  PE=HIDE 

        |            |           |        |         |   Thread=HIDE 

 

 100.0% | 176.687480 |        -- |     -- | 17108.0 |Total 

|------------------------------------------------------------------------ 

|  85.3% | 150.789559 |        -- |     -- |     8.0 |USER 

||----------------------------------------------------------------------- 

|  85.0% | 150.215785 | 24.876709 |  14.4% |     2.0 | jacobi_.LOOPS 

||======================================================================= 

|  12.2% |  21.600616 |        -- |     -- | 16071.0 |MPI 

||----------------------------------------------------------------------- 

|  11.9% |  21.104488 | 41.016738 |  67.1% |  3009.0 | mpi_waitall 

||======================================================================= 

|   2.4% |   4.297301 |        -- |     -- |  1007.0 |MPI_SYNC 

||----------------------------------------------------------------------- 

|   2.4% |   4.166092 |  4.135016 |  99.3% |  1004.0 | mpi_allreduce_(sync) 

|======================================================================== 

130 HPCMP User Training 



Table 3:  Inclusive Loop Time from -hprofile_generate 

 

 Loop Incl  |    Loop  |  Loop  |  Loop  |Function=/.LOOP[.] 

      Time  |     Hit  | Trips  | Trips  | PE=HIDE 

     Total  |          |   Min  |   Max  | 

|--------------------------------------------------------------- 

… 

| 175.676881 |        2 |      0 |   1003 |jacobi_.LOOP.07.li.267 

|   0.917107 |     1003 |      0 |    260 |jacobi_.LOOP.08.li.276 

|   0.907515 |   129888 |      0 |    260 |jacobi_.LOOP.09.li.277 

|   0.446784 |     1003 |      0 |    260 |jacobi_.LOOP.10.li.288 

|   0.425763 |   129888 |      0 |    516 |jacobi_.LOOP.11.li.289 

|   0.395003 |     1003 |      0 |    260 |jacobi_.LOOP.12.li.300 

|   0.374206 |   129888 |      0 |    516 |jacobi_.LOOP.13.li.301 

| 126.250610 |     1003 |      0 |    256 |jacobi_.LOOP.14.li.312 

| 126.223035 |   127882 |      0 |    256 |jacobi_.LOOP.15.li.313 

| 124.298650 | 16305019 |      0 |    512 |jacobi_.LOOP.16.li.314 

|  20.875086 |     1003 |      0 |    256 |jacobi_.LOOP.17.li.336 

|  20.862715 |   127882 |      0 |    256 |jacobi_.LOOP.18.li.337 

|  19.428085 | 16305019 |      0 |    512 |jacobi_.LOOP.19.li.338 

|========================================================================= 

 

 
131 HPCMP User Training 





 133  

 Sampling is useful to determine where the program spends most of its 

time (functions and lines) 

 The environment variable PAT_RT_EXPERIMENT allows the 

specification of the type of experiment prior to execution 

• samp_pc_time (default) 

 Samples the PC at intervals of 10,000 microseconds  

 Measures user CPU and system CPU time 

 Returns total program time and absolute and relative times each program 

counter was recorded 

 Optionally record the values of hardware counters specified with  

PAT_RT_HWPC 

 

• samp_pc_ovfl 

 Samples the PC at a given overflow of a HW counter 

 Does not allow collection of hardware counters 

• samp_cs_time 

 Sample the call stack at a given time interval 

HPCMP User Training 



 blas  Basic Linear Algebra subprograms 

 CAF  Co-Array Fortran (Cray CCE compiler only) 

 HDF5 manages extremely large and complex data collections 

 heap  dynamic heap 

 io  includes stdio and sysio groups 

 lapack Linear Algebra Package 

 math  ANSI math 

 mpi  MPI 

 omp  OpenMP API  

 omp-rtl OpenMP runtime library (not supported on Catamount) 

 pthreads POSIX threads (not supported on Catamount) 

 shmem SHMEM 

 sysio  I/O system calls 

 system system calls 

 upc  Unified Parallel C (Cray CCE compiler only) 

 

For a full list, please see man pat_build 

 

134 HPCMP User Training 



 

 

 

 

 

 

 

 

 

heidi@kaibab:/lus/scratch/heidi> pat_report -O –h 

 

pat_report: Help for -O option: 

Available option values are in left column, a prefix can be 

specified: 

  ct                       -O calltree 

  defaults                 <Tables that would appear by default.> 

  heap                     -O heap_program,heap_hiwater,heap_leaks 

  io                       -O read_stats,write_stats 

  lb                       -O load_balance 

  load_balance             -O lb_program,lb_group,lb_function 

  mpi                      -O mpi_callers 

  --- 

  D1_D2_observation        Observation about Functions with low 

D1+D2 cache hit ratio 

  D1_D2_util               Functions with low D1+D2 cache hit ratio 

  D1_observation           Observation about Functions with low D1 

cache hit ratio 

  D1_util                  Functions with low D1 cache hit ratio 

  TLB_observation          Observation about Functions with low TLB 

refs/miss 

  TLB_util                 Functions with low TLB refs/miss 
 

 
135 HPCMP User Training 



 -g heap 
• calloc, cfree, malloc, free, malloc_trim, malloc_usable_size, mallopt, 

memalign, posix_memalign, pvalloc, realloc, valloc 

 

 -g heap 

 -g sheap 

 -g shmem 
• shfree, shfree_nb, shmalloc, shmalloc_nb, shrealloc 

 

 -g upc  (automatic with –O apa) 
• upc_alloc, upc_all_alloc, upc_all_free, uc_all_lock_alloc, 

upc_all_lock_free, upc_free, upc_global_alloc, upc_global_lock_alloc, 

upc_lock_free 

136 HPCMP User Training 



   
 
 
Notes for table 5: 
 
  Table option: 
    -O heap_hiwater 
  Options implied by table option: 
    -d am@,ub,ta,ua,tf,nf,ac,ab -b pe=[mmm] 
 
  This table shows only lines with Tracked Heap HiWater MBytes > 0. 
 
 
Table 5:  Heap Stats during Main Program 
 
 Tracked |  Total | Total | Tracked | Tracked |PE[mmm] 
    Heap | Allocs | Frees | Objects |  MBytes | 
 HiWater |        |       |     Not |     Not | 
  MBytes |        |       |   Freed |   Freed | 
 
   9.794 |    915 |   910 |       4 |   1.011 |Total 
|----------------------------------------------------- 
|   9.943 |   1170 |  1103 |      68 |   1.046 |pe.0 
|   9.909 |    715 |   712 |       3 |   1.010 |pe.22 
|   9.446 |   1278 |  1275 |       3 |   1.010 |pe.43 
|===================================================== 

137 HPCMP User Training 



 Fortran 
include “pat_apif.h” 

… 

call PAT_region_begin(id, “label”, ierr) 

do i = 1,n 

… 

enddo 

call PAT_region_end(id, ierr) 

 

 C & C++ 
include <pat_api.h> 

… 

ierr = PAT_region_begin(id, “label”); 

< code segment > 

ierr = PAT_region_end(id); 

138 HPCMP User Training 





 Measure overhead incurred entering and leaving 
• Parallel regions 

• Work-sharing constructs within parallel regions 

 

 Show per-thread timings and other data 

 

 Trace entry points automatically inserted by Cray and PGI 

compilers  
• Provides per-thread information 

 

 Can use sampling to get performance data without  API (per 

process view… no per-thread counters) 
• Run with OMP_NUM_THREADS=1 during sampling 

• Watch for calls to omp_set_num_threads() 

 

 
145 HPCMP User Training 



 

 Load imbalance calculated across all threads in all ranks for 

mixed MPI/OpenMP programs 
• Can choose to see imbalance to each programming model separately 

 

 Data displayed by default in pat_report (no options needed) 
• Focus on where program is spending its time 

• Assumes all requested resources should be used 

 

 

 

 

146 HPCMP User Training 



 

 profile_pe.th (default view) 
• Imbalance based on the set of all threads in the program 

 

 profile_pe_th 
• Highlights imbalance across MPI ranks 

• Uses max for thread aggregation to avoid showing under-performers 

• Aggregated thread data merged into MPI rank data 

 

 profile_th_pe 
• For each thread, show imbalance over  MPI ranks 

• Example: Load imbalance shown where thread 4 in each MPI rank 

didn’t get much work 

147 HPCMP User Training 



 

 

 

 

 

 

 

Table 1:  Profile by Function Group and Function 

 

 Time % |      Time |Imb. Time |   Imb. |   Calls |Group 

        |           |          | Time % |         | Function 

        |           |          |        |         |  PE.Thread='HIDE' 

 

 100.0% | 12.548996 |       -- |     -- |  7944.7 |Total 

|-------------------------------------------------------------------- 

|  97.8% | 12.277316 |       -- |     -- |  3371.8 |USER 

||------------------------------------------------------------------- 

||  35.6% |  4.473536 | 0.072259 |   1.6% |   498.0 |calc3_.LOOP@li.96 

||  29.1% |  3.653288 | 0.070551 |   1.9% |   500.0 |calc2_.LOOP@li.74 

||  28.3% |  3.545677 | 0.056303 |   1.6% |   500.0 |calc1_.LOOP@li.69 

. . . 

||=================================================================== 

|   1.2% |  0.155028 |       -- |     -- |  1000.5 |MPI_SYNC 

||------------------------------------------------------------------- 

||   1.2% |  0.154899 | 0.674518 |  82.0% |   999.0 |mpi_barrier_(sync) 

||   0.0% |  0.000129 | 0.000489 |  79.8% |     1.5 |mpi_reduce_(sync) 

||=================================================================== 

|   0.7% |  0.082943 |       -- |     -- |  3197.2 |MPI 

||------------------------------------------------------------------- 

||   0.4% |  0.047471 | 0.158820 |  77.6% |   999.0 |mpi_barrier_ 

||   0.1% |  0.015157 | 0.295055 |  95.9% |   297.1 |mpi_waitall_ 

. . . 

||=================================================================== 

|   0.3% |  0.033683 |       -- |     -- |   374.5 |OMP 

||------------------------------------------------------------------- 

||   0.1% |  0.013098 | 0.078620 |  86.4% |   125.0 |calc2_.REGION@li.74(ovhd) 

||   0.1% |  0.010298 | 0.052760 |  84.3% |   124.5 |calc3_.REGION@li.96(ovhd) 

||   0.1% |  0.010287 | 0.068428 |  87.6% |   125.0 |calc1_.REGION@li.69(ovhd) 

||=================================================================== 

|   0.0% |  0.000027 | 0.000128 |  83.0% |     0.8 |PTHREAD 

|        |           |          |        |         | pthread_create 

|==================================================================== 

 

 

OpenMP overhead is normally 
small and is filtered out on 
the default report (< 0.5%). 
When using “–T” the filter is 
deactivated  

OpenMP Parallel DOs 
<function>.<region>@<line> 
automatically instrumented 

148 HPCMP User Training 



 

 

 

======================================================================== 

USER / calc3_.LOOP@li.96 

------------------------------------------------------------------------ 

  Time%                                             37.3% 

  Time                                           6.826587 secs 

  Imb.Time                                       0.039858 secs 

  Imb.Time%                                          0.6% 

  Calls                           72.9 /sec         498.0 calls 

  DATA_CACHE_REFILLS: 

    L2_MODIFIED:L2_OWNED: 

    L2_EXCLUSIVE:L2_SHARED      64.364M/sec     439531950 fills 

  DATA_CACHE_REFILLS_FROM_SYSTEM: 

    ALL                         10.760M/sec      73477950 fills 

  PAPI_L1_DCM                   64.973M/sec     443686857 misses 

  PAPI_L1_DCA                  135.699M/sec     926662773 refs 

  User time (approx)             6.829 secs   15706256693 cycles  100.0%Time 

  Average Time per Call                          0.013708 sec 

  CrayPat Overhead : Time         0.0% 

  D1 cache hit,miss ratios       52.1% hits         47.9% misses 

  D1 cache utilization (misses)   2.09 refs/miss    0.261 avg hits 

  D1 cache utilization (refills)  1.81 refs/refill  0.226 avg uses 

  D2 cache hit,miss ratio        85.7% hits         14.3% misses 

  D1+D2 cache hit,miss ratio     93.1% hits          6.9% misses 

  D1+D2 cache utilization        14.58 refs/miss    1.823 avg hits 

  System to D1 refill           10.760M/sec      73477950 lines 

  System to D1 bandwidth       656.738MB/sec   4702588826 bytes 

  D2 to D1 bandwidth          3928.490MB/sec  28130044826 bytes 

======================================================================== 

149 HPCMP User Training 



 No support for nested parallel regions 
• To work around this until addressed disable nested regions by setting 

OMP_NESTED=0 

• Watch for calls to omp_set_nested() 

 

 If compiler merges 2 or more parallel regions, OpenMP trace 

points are not merged correctly 
• To work around this until addressed, use –h thread1 

 

 We need to add tracing support for barriers (both implicit and 

explicit) 
• Need support from compilers 

 

150 HPCMP User Training 



 When code is network bound 
• Look at collective time, excluding sync time:  this goes up as network 

becomes a problem 

• Look at point-to-point wait times: if these go up, network may be a 

problem 

 

 When MPI starts leveling off 
• Too much memory used, even if on-node shared communication is 

available 

• As the number of MPI ranks increases, more off-node communication 

can result, creating a network injection issue 

 

 Adding OpenMP to memory bound codes may aggravate 

memory bandwidth issues, but you have more control when 

optimizing for cache 

 151 HPCMP User Training 





 How do I increase the traced functions limit for pat_report: 

 -D trace-max=N (N is 1024 by default) 

 How do I know which “core” my ranks and threads are pinned 
to? 

 Set the MPICH_CPUMASK_DISPLAY environment variable at 
runtime. 

[PE_0]: cpumask set to 1 cpu on nid00036, cpumask = 00000001 

[PE_1]: cpumask set to 1 cpu on nid00036, cpumask = 00000010 

[PE_2]: cpumask set to 1 cpu on nid00036, cpumask = 00000100 

[PE_3]: cpumask set to 1 cpu on nid00036, cpumask = 00001000 

[PE_4]: cpumask set to 1 cpu on nid00036, cpumask = 00010000 

[PE_5]: cpumask set to 1 cpu on nid00036, cpumask = 00100000 

[PE_6]: cpumask set to 1 cpu on nid00036, cpumask = 01000000 

[PE_7]: cpumask set to 1 cpu on nid00036, cpumask = 10000000 

HPCMP User Training 153 



 Linux has a “first touch policy” for memory allocation 

 *alloc functions don’t actually allocate your memory 

 Memory gets allocated when “touched” 

 Problem: A code can allocate more memory than available 

 Linux assumes “swap space,” we don’t have any 

 Applications won’t fail from over-allocation until the memory is finally 
touched 

 Problem: Memory will be put on the core of the “touching” thread 

 Only a problem if thread 0 allocates all memory for a node 

 Solution: Always initialize your memory in a threaded region immediately 
after allocating it 

 If you over-allocate, it will fail immediately, rather than a strange place 
in your code 

 If every thread touches its own memory, it will be allocated on the 
proper socket / die. 

154  


